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Introduction

Nanopore sequencing has rapidly gained traction as a transformative next-generation sequencing technology, offering unique advantages over traditional platforms like Illumina. Its ability to sequence single molecules in
real time—Dby detecting changes in ionic current as DNA passes through nanopores—provides unmatched speed, flexibility, and scalability. While previous work has emphasized nanopore sequencing's adaptability for
low- and medium-throughput laboratories, this poster shifts the spotlight to high-throughput applications. We present the use of NanoTYPE™, Werfen’s robust HLA genotyping solution, tailored for the needs of large
registries and high-volume laboratories. This study showcases a 59 samples run using the PromethlON® 2 Solo and the transposase-based Rapid Barcoding Kit (Chemistry 14), eliminating complex ligation steps
washing, and third-party reagents. PCR and library preparation were performed manually on Day 1, sequencing launched that afternoon, and results were delivered by early afternoon on Day 2—highlighting a highly
streamlined, cost-efficient workflow. Critically, this is enabled by NanoTYPE™ 11 Plus (RUO) kit, the first and only solution providing full coverage and complete phasing across all HLA exons. This ensures the highest
possible resolution and confidence in genotyping results, without compromising speed or throughput.

Material & Methods Results
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Figure 3. Total, passed, and failed reads (in millions) sequenced over time. Figure 4. Q score over sequencing time.

sequencing capabilities to the benchtop. Like the MinlON®, it operates via USB-
C and interfaces directly with a laptop or external workstation. However, due to
its significantly higher data output—thanks to the increased number of
nanopores in PromethlON flow cells—the P2 Solo requires a more robust GPU
for basecalling and downstream analysis.

This graph shows the distribution of Q scores throughout the run, with a median Phred quality score of 17.36 for
the passed reads.
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read lengths Of 2_3 kb for ClaSS I genes and 3_4 kb for Class ", Wlth many I‘eadS extending tO nearly fuu amplicon (Figure 6. ) illustrates signal-to-noise levels and highlights allelic balance at heterozygous positions (blue and red dots). Phasing can be visualized across the gene (Figure 6. ) and reads supporting the phasing are identified as straight reads (cis) vs
cross reads (trans).
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assignment—without the added complexity or time burden of traditional ligation workflows.
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Veriti™ Thermocycler (Applied Biosystems, ThermoFisher), gDNA quantification performed using a NanoDrop HLADOA1 T 10000 Fig10
spectrophotometer (ThermoFisher), and amplicon concentration measured using the Qubit dsDNA BR Assay Kit HLA-DQB1 9741 9741 9914 097.37 9912 AAze0s  HLA- HLA-DQB1703:02:01 + HLA-DQB1705:01:01 HLADQB1703:02:01:01 +  partially concordant
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MinKN OW run pa rameters were as follows: HLA-DRB4 100.00 100.00 100.00 100.00 100.00 We achieved a concordance rate of 99.92%, with a single discrepancy arising from one sample where the 4th field of the HLA-DQB1 alleles was not
. . . . . . . reported. The reference sample had HLA-DQB1*03:02:07 + HLA-DQB1*05:01:01, while the result included the 4th field: HLA-DQB1*03:02:07:07 +
Sequencing was performed using MinKNOW version 24.02.10 with the High-Accuracy (HAC) basecalling model set e 100.00| 100.00] 100.00| 100.00] 100.00 HLA-DQB1*05:01:01:03.
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at 400 bases per second (bpS) The mux scan was Conflgured Wlth the defaUlt duratlon Of 90 mInUtes' A minimum Class | loci reached full concordance across all 59 samples after just 3 hours of sequencing, whereas Class Il loci required a longer runtime. This delay can often be attributed to PCR amplification with unbalanced alleles and/or variability in barcoding
read length of 1000 bp and a minimum Q score of 10 were app“ed for f||_ter|ng efficiency affecting a few samples. In majority of the cases, sequencing longer will not improve the results. In such cases, and for cost-efficiency, it may be preferable to stop sequencing and re-amplify the unresolved loci using NanoTYPE MONO™, then

combine it with your next library preparation.

Discussion & Conclusion

This study demonstrates that the combination of the NanoTYPE 11 Plus kit, PromethlON® 2 Solo, and the Rapid Barcoding Kit v14 offers a scalable, high-throughput solution for HLA genotyping without compromising data
quality or phasing accuracy. The use of a transposase-based protocol significantly reduces hands-on time, eliminates complex ligation steps, and enhances workflow simplicity—key factors for large registries and clinical
laboratories aiming for efficiency and reproducibility. Our analysis of 59 samples revealed rapid and robust concordance across Class | loci within just 3 hours, while Class |l loci required a longer runtime for some samples
due to PCR performance or barcode imbalance. Notably, Figure 9 shows that adding more sequencing time or reads does not signhificantly improve concordance, reinforcing the idea of an optimal read threshold. This
observation supports a cost-efficient decision-making process: instead of prolonging sequencing unnecessarily, it is more strategic to stop the run and re-amplify challenging loci using NanoTYPE MONO™, which can then
be pooled into a future library preparation. Importantly, the inclusion of Tube 2 in the NanoTYPE 11 Plus assay enables extended coverage for DR and DP loci and delivers unambiguous phasing from the 5' to 3' ends.
Combined with NanoTYPER 2.2’s analytical capabilities, the system offers powerful visualization tools like the Noise and Phasing Track to help troubleshooting and interpretation.

The NanolYPE workflow presented here enables full-gene, high-resolution HLA typing in under 24 hours with 99.92% concordance across 59 diverse samples. This performance validates its suitability for high-throughput

environments while maintaining the quality expected for clinical-grade genotyping. Together, the streamlined PCR protocol, single-tube library preparation, and PromethlON's scalable sequencing capacity offer an optimized
solution for registries and donor centers, bridging the gap between speed, accuracy, and throughput. The flexibility to reprocess difficult samples using NanoTYPE MONO™ ensures no compromise in data quality, making

this platform ideal for the future of large-scale HLA typing. f
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